Funder	Project Title	Funding	Institution
Brain & Behavior Research Foundation	Signaling Pathways that Regulate Excitatory-inhibitory Balance	\$0	University of California, San Diego
Brain & Behavior Research Foundation	Interrogating Synaptic Transmission in Human Neurons	\$17,500	Stanford University
Brain & Behavior Research Foundation	Interrogating Synaptic Transmission in Human Neurons	\$17,500	Stanford University
Brain & Behavior Research Foundation	Abnormal connectivity in autism	\$0	University of Southern California
Brain & Behavior Research Foundation	Dopaminergic Dysregulation in Mouse Models of Autism Spectrum Disorder	\$35,000	University of California, Berkeley
Brain & Behavior Research Foundation	Developing Neural Markers to Evaluate Social Skills Training in ASD	\$17,500	California Institute of Technology
Brain & Behavior Research Foundation	Neural Correlates of Behavioral Treatment for Toddlers with ASD	\$34,821	University of California, Davis Medical Center
Brain & Behavior Research Foundation	The Role of Medial Amygdala in Regulating Social Behaviors	\$35,000	University of California, Los Angeles
Brain & Behavior Research Foundation	Corticogenesis and Autism Spectrum Disorders: New Hypotheses on Transcriptional Regulation of Embryonic Neurogenesis by FGFs from In Vivo Studies and RNA-sequencing Analysis of Mouse Brain	\$34,839	Yale University
Brain & Behavior Research Foundation	High-throughput Quantitative Analysis of Enhancer Elements Associated with ASD	\$17,500	Yale University
Brain & Behavior Research Foundation	Exploring Tridimensional Chromatin Interactions in ASD- derived Brain Organoids	\$35,000	Yale University
Brain & Behavior Research Foundation	Excitatory/Inhibitory Imbalance in Autism and Early-course Schizophrenia	\$34,862	Yale University; Connecticut Mental Health Center
Brain & Behavior Research Foundation	Neural Bases of Atypical Language Learning in Children with ASD: A Combined FMRI/MEG Study	\$21,573	University of Delaware
Brain & Behavior Research Foundation	Reconceptualizing Brain Connectivity and Development in Autism	\$0	University of Miami
Brain & Behavior Research Foundation	The Study of Homeostatic Downscaling in Psychiatric Disorders	\$17,500	University of Illinois at Urbana-Champaign
Brain & Behavior Research Foundation	Multimodal Characterization of the Brain Phenotype in Children with Duplication of the 7q11.23 Williams Syndrome Chromosomal Region: A Well-defined Genetic Model for Autism	\$0	National Institutes of Health - Intramural
Brain & Behavior Research Foundation	Arc is a Physical Hub of Glutamate Receptor Regulation Implicated in Schizophrenia	\$17,500	Johns Hopkins University
Brain & Behavior Research Foundation	Dysfunction of Cortical Systems for Language and Working Memory in Autism Spectrum Disorder	\$35,000	Boston University
Brain & Behavior Research Foundation	Advancing a Biomarker of Disrupted GABAergic Neurotransmission in Autism	\$35,000	Massachusetts Institute of Technology
Brain & Behavior Research Foundation	Mechanisms of Thalamic Receptive Field Disruption in Autism Spectrum Disorder	\$35,000	Massachusetts Institute of Technology
Brain & Behavior Research Foundation	Genotype to Phenotype Association in Autism Spectrum Disorders	\$17,500	Massachusetts General Hospital; Harvard University
Brain & Behavior Research Foundation	Modeling Microglial Involvement in Autism Spectrum Disorders, with Human Neuro-glial Co-cultures	\$0	Whitehead Institute for Biomedical Research

Funder	Project Title	Funding	Institution
Brain & Behavior Research Foundation	Role of Serotonin Signaling during Neural Circuitry Formation in Autism Spectrum Disorders	\$45,000	Massachusetts Institute of Technology
Brain & Behavior Research Foundation	Rapid Phenomic Interrogation of CRISPR-Cas9 Edited Mammalian Brains	\$17,500	Massachusetts Institute of Technology
Brain & Behavior Research Foundation	Neural Circuit Basis for Cortical Oscillations as a Biomarker for Neurological Disorders	\$35,000	Boston University
Brain & Behavior Research Foundation	Microglia-dependent Regulation of Inhibitory Brain Circuits in Health and Disease	\$35,000	University of Massachusetts Medical SchoolUniversity of Massachusetts, Amherst
Brain & Behavior Research Foundation	Understanding Disruption of Neuronal DNA Methylation in Disorders of Cognition	\$35,000	Washington University in St. Louis
Brain & Behavior Research Foundation	Cellular Mechanisms Controlling White Matter Connectivity: Making Sense of a Genetic Risk Factor for Autism and Schizophrenia	\$17,500	Columbia University
Brain & Behavior Research Foundation	Striatal Interneuron Deficiency Produces Autistic-like Behavior: An Insight into Neural Circuits and Treatment	\$17,500	Research Foundation for the State University of New York (SUNY) on behalf of University at Buffalo
Brain & Behavior Research Foundation	Nominally Non-responsive Cells in a Sensory-prefrontal Cortical Loop Enable the Flexible Control of Adaptive Behavior	\$17,500	New York University
Brain & Behavior Research Foundation	Antigenic Specificity and Neurological Effects of Monoclonal Anti-brain Antibodies Isolated from Mothers of a Child with Autism Spectrum Disorder: Toward Protection Studies	\$0	The Feinstein Institute for Medical Research
Brain & Behavior Research Foundation	Electrophysiological Correlates of Social-emotional Learning in ASD	\$35,000	State University of New York, Stony Brook
Brain & Behavior Research Foundation	Neural Basis of Deficits in Multisensory Integration in Schizophrenia and ASD	\$17,500	Columbia University
Brain & Behavior Research Foundation	In vivo Imaging of Prefrontal Cortical Activity During Social Interactions in Normal and Autism Mice	\$17,500	Duke University
Brain & Behavior Research Foundation	A Massively Parallel Approach to Functional Testing of PTEN Mutations	\$0	Oregon Health & Science University
Brain & Behavior Research Foundation	Interpersonal Neural Coordination During Social Interaction in Children with Autism Spectrum Disorders	\$17,485	University of Pittsburgh
Brain & Behavior Research Foundation	Above the Noise: RNA-Seq Analysis of MeCP2 and Non-MeCP2 Rett Syndrome Autopsy Samples	\$17,500	Vanderbilt University
Brain & Behavior Research Foundation	Modulation of Excitatory Synaptic Transmission in Mental Illnesses	\$25,000	Vanderbilt University
Brain & Behavior Research Foundation	The Role of Microglia in Regulation of Projection-specific Prefrontal Cortical Neuron Synapses	\$17,500	Vanderbilt University Medical Center
Brain & Behavior Research Foundation	SRPX2 Regulation of Synapse Formation: Implications for Schizophrenia and Autism Spectrum Disorder	\$17,500	University of Texas Health Science Center at San Antonio
Brain & Behavior Research Foundation	Neuroligin 2 in Cortical Excitation-Inhibition Balance	\$17,500	Baylor College of Medicine
Brain & Behavior Research Foundation	The Role of UBE3B in the Pathogenesis of Autism Spectrum Disorder	\$35,000	University of Texas Southwestern Medical Center

Funder	Project Title	Funding	Institution
Brain & Behavior Research Foundation	From Synaptic Dysfunction to Abnormal Brain Connectivity in Autism	\$17,500	University of Utah
Brain & Behavior Research Foundation	Synaptic Homeostasis of the Homer1 Network in a Shank3 Model of Autism	\$35,000	Seattle Children's Research Institute
Brain & Behavior Research Foundation	Evoked Neurotransmitter and Neurochemical Amygdala Responses and Autonomic Arousal to Social Threat and Safety Signals in Typically Developing and Autistic Children and Adolescents	\$17,500	University of Wisconsin-Madison
Brain & Behavior Research Foundation	Investigating the Function of Autism Candidate Gene LIN-2/CASK in Cholinergic Synapse	\$17,425	University of Queensland
Brain & Behavior Research Foundation	Autism Linked LRRTM4-Heparan Sulphate Proteoglycan Complex Functions in Synapse Development	\$15,000	University of Manitoba
Brain & Behavior Research Foundation	Mechanisms of eIF4E-dependent Translational Control in Autism	\$33,333	McGill University
Brain & Behavior Research Foundation	Developmental Role of Prefrontal Cortex-raphe Circuits in Stress and Mood Disorders	\$35,000	INSERM
Brain & Behavior Research Foundation	Role of the Orphan Glutamate Receptors Delta on the Activity of Dopaminergic Neurons	\$17,500	Centre National de la Recherche Scientifique (CNRS)University Pierre & Marie Curie
Brain & Behavior Research Foundation	Balancing Neuronal Excitability: Synaptic Shank Proteins Control Metabotropic Glutamate Receptor Trafficking and Activity	\$17,500	Utrecht University
Brain & Behavior Research Foundation	Investigating the Role of Homeostatic Plasticity in Autism Spectrum Disorder	\$15,500	King's College London
Brain & Behavior Research Foundation	Using Targeted Genome Editing to Generate Novel Preclinical Rodent Models of Autism	\$17,500	University of Edinburgh
Brain & Behavior Research Foundation	Shifting Brain Excitation/Inhibition Balance in Autism Spectrum Disorder	\$24,998	King's College London
Department of Defense - Army	The Relationship Between Brain Functioning, Behavior, and Microbiota in Autism Spectrum Disorder	\$300,955	University of California, Los Angeles
Department of Defense - Army	The Relationship Between Brain Functioning, Behavior, and Microbiota in Autism Spectrum Disorder	\$506,659	Southern California, University of
Department of Defense - Army	Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model	\$0	Nemours Children's Health System, Jacksonville
Department of Defense - Army	Autism-Associated Mutations in L-Type Ca2+ Channels	\$150,446	Northwestern University
Department of Defense - Army	Autism-Associated Mutations in L-Type Ca2+ Channels	\$286,748	Northwestern University
Department of Defense - Army	Predicting Situational Onset of Aggression in Minimally Verbal Youth with Autism Using Biosensor Data and Machine Learning Algorithms	\$315,675	Maine Medical Center
Department of Defense - Army	Predicting Situational Onset of Aggression in Minimally Verbal Youth with Autism Using Biosensor Data and Machine Learning Algorithms	\$460,733	Northeastern University
Department of Defense - Army	Neural Correlates of the Y Chromosome in Autism: XYY Syndrome as a Genetic Model	\$0	Children's Hospital of Philadelphia

Funder	Project Title	Funding	Institution
Department of Defense - Army	Forward Genetic Screen to Identify Novel Therapeutic Entry Points of an Autism Spectrum Disorder	\$0	Baylor College of Medicine
Department of Defense - Army	Brain Network Activation Patterns in Autism Due to Genomic Copy Number Variation	\$0	Baylor College of Medicine
Autism Research Institute	Atypical tryptophan metabolism is related to autism characteristics: Development of plasma and urine biomarkers	\$30,000	University of Arkansas
Autism Research Institute	Elevation of methionine sulfoxide in children with autism	\$30,000	University of Arkansas
Autism Research Institute	Transgenerational transmission of the behavioral phenotype in rats exposed to folate receptor antibody	\$20,000	State University of New York
Autism Research Institute	To assess MAPK pathway intracellular biomarkers in individuals with autism	\$23,900	Hartwick College
Autism Research Institute	Proteomic Studies of Autistic Brain	\$0	Cleveland Clinic
Autism Research Institute	A Quantitative Study of Pyramidal Cells and Interneurons in the Cerebral Cortex	\$0	University of South Carolina, Greenville
Autism Science Foundation	Role of an autism-related cytokine in a genetic model of ASD	\$0	University of California, San Diego
Autism Science Foundation	Undergraduate Research Award	\$3,000	University of California, San Diego
Autism Science Foundation	Study of a potentially novel biomarker for features of ASD	\$0	Johns Hopkins University
Autism Science Foundation	Calcium Channels as a Core Mechanism in the Neurobiology of ASD	\$0	Massachusetts General Hospital
Autism Science Foundation	Brain Somatic Mosaicism at ASD-Associated Loci	\$0	University of Michigan
Autism Science Foundation	Undergraduate Research Award	\$3,000	University of Minnesota
Autism Science Foundation	Undergraduate Research Award	\$3,000	Cornell University
Autism Science Foundation	Mechanisms of sensory processing in ASD	\$0	University of Rochester
Autism Science Foundation	Using genes and IPSC cells from the same patient to determine the potential validity of a blood based biomarker	\$35,000	Mount Sinai School of Medicine
Autism Science Foundation	Undergraduate Research Award	\$3,000	Duke University
Autism Science Foundation	Pupil Response in Individuals with ASD and Known Copy Number Variations	\$5,000	Geisinger Clinic
Autism Science Foundation	Undergraduate Research Award	\$0	Children's Hospital of Philadelphia
Autism Science Foundation	Genetics Behind Brain Connectivity in ASD	\$0	University of Texas Southwestern Medical Center
Autism Science Foundation	Genetic mutations in chromosome 16 and their role in autism	\$0	University of Texas Southwestern Medical Center
Autism Speaks	Alterations of the human brain structural connectome in preschool aged children with ASD	\$0	University of California, Davis
Autism Speaks	Impact of Familial ASD Risk on Functional Brain Connectivity in Infants	\$32,000	University of California, Los Angeles

Funder	Project Title	Funding	Institution
Autism Speaks	High-throughput screens to discover regulatory mechanisms contributing to autism spectrum disorder	\$32,000	Yale University
Autism Speaks	Regulation of Cortical Circuit Assembly by Syngap1	\$32,000	The Scripps Research Institute, FL
Autism Speaks	Cortical Markers of Central Auditory Processing Disorder in Minimally Verbal Children with ASD	\$30,400	Boston University
Autism Speaks	Foundation Associates agreement (BrainNet)	\$0	Foundation Associates, LLC
Autism Speaks	Molecular control of developing corticostriatal circuits and behaviors in an autism model	\$32,000	Icahn School of Medicine at Mount Sinai
Autism Speaks	Investigating Shank3 function during synaptogenesis in mice to define a therapeutic window for ASD.	\$0	Duke University
Autism Speaks	Evaluating the association between parental broader autism phenotype and child ASD phenotype	\$0	Univ of North Carolina, Chapel Hill
Autism Speaks	Cell-type and circuit-specific functional deficits in cortex from gene disruptions linked to autism	\$0	Univ of North Carolina, Chapel Hill
Autism Speaks	Neurobiological foundations of self-conscious emotion understanding in adolescents with ASD	\$0	University of Oregon
Autism Speaks	Temporal divergence of hypoconnectivity and excitotoxicity in Rett syndrome	\$84,214	Vanderbilt University
Autism Speaks	Nonsocial Interests and Reward Processing in Autism Spectrum Disorders	\$0	Vanderbilt University
Autism Speaks	Behavioral and Neural Variability in Autism Spectrum Disorder	\$118,095	Vanderbilt University
Autism Speaks	Investigating the cerebellar circuit target for modulating ASD behaviors	\$32,000	University of Texas Southwestern Medical Center
Autism Speaks	Elucidating synapse-specific defects underlying autism	\$30,400	University of Utah
Autism Speaks	CYFIP function/s in brain: insights into Autism Spectrum Disorders	\$61,600	Vlaams Instituut voor Biotechnologie
Autism Speaks	Monitoring Treatment-Induced Neuroanatomical Changes in a Mouse Model of Rett Syndrome	\$0	The Hospital for Sick Children
Health Resources and Services Administration	Maternal Immune Status and Autism Severity	\$0	University of California MIND Institute
National Institutes of Health	Met Receptor Tyrosine Kinase and the Development of Forebrain Circuits	\$383,750	University of Arizona
National Institutes of Health	Loss and Rescue of Endocannabinoid-Dependent LTP and Memory in Fragile-X Model Mice	\$426,656	University of California-Irvine
National Institutes of Health	GABAergic Neurophysiology in Autism Spectrum Disorder	\$195,048	Stanford University
National Institutes of Health	Homeostatic Stabilization of Neural Function in Health and Disease	\$1,010,038	University of California, San Francisco
National Institutes of Health	Project 4: Calcium Signaling Defects in Autism (Pessah/Lein)	\$106,956	University of California, Davis

Funder	Project Title	Funding	Institution
National Institutes of Health	Scalable Technologies for Genome Engineering in hiPSCs	\$306,948	University of California, San Diego
National Institutes of Health	Function and Structure Adaptations in Forebrain Development	\$590,225	Children's Hospital Los Angeles
National Institutes of Health	Induced Neuronal Cells: a Novel Tool to Study Neuropsychiatric Diseases	\$615,259	Stanford University
National Institutes of Health	Dissecting Neural Mechanisms Integrating Multiple Inputs in C. Elegans	\$485,000	Salk Institute For Biological Studies
National Institutes of Health	Optogenetic Treatment of Social Behavior in Autism	\$385,000	University of California, Los Angeles
National Institutes of Health	Proteogenetics of Autism Spectrum Disorders	\$608,199	Scripps Research Institute, CA
National Institutes of Health	Heparan Sulfate in Neurophysiology and Neurological Disorders	\$425,490	Sanford Burnham Prebys Medical Discovery Institute
National Institutes of Health	Gaining Insight Into Psychiatric Disease by Engineering Piece by Piece the Human Brain in Vitro.	\$491,734	Stanford University
National Institutes of Health	Prenatal Origins of Neurometabolic Consequences	\$319,550	University of California, Los Angeles
National Institutes of Health	Immune Regulation and Neurodevelopmental Disorders	\$196,250	University of California, Davis
National Institutes of Health	Limbic Circuit Dysfunction in Offspring Following Maternal Immune Activation	\$237,326	Stanford University
National Institutes of Health	Project 3: Immune Environment Interaction and Neurodevelopment	\$107,637	University of California, Davis
National Institutes of Health	Genetic Models for Social Attachment Deficits in Psychiatric Illness	\$184,131	University of California, San Francisco
National Institutes of Health	Identifying the Role of Emotion Processes in Core Features of Autism Spectrum Disorder	\$198,918	University of California, San Francisco
National Institutes of Health	Evaluating the Effect of Splicing Mutations on Isoform Networks in Autism	\$519,676	University of California, San Diego
National Institutes of Health	Mechanisms Underlying Word Learning in Fragile X Syndrome and Nonsyndromic ASD	\$157,000	University of California, Davis
National Institutes of Health	Learning and Brain Plasticity in Children with Autism: Relation to Cognitive Inflexibility and Restricted- Repetitive Behaviors	\$770,410	Stanford University
National Institutes of Health	Parsing ASD Heterogeneity: Neuroendophenotypes of Social Attention and Sensory Responsivity	\$274,213	University of California, Los Angeles
National Institutes of Health	Genetics and Biomarkers Core	\$314,498	University of California, Los Angeles
National Institutes of Health	Chromosomal Boundary Alterations Driving Transcriptional Dysregulation in Brain Disorders	\$481,173	University of California, San Diego
National Institutes of Health	Phenotypic Characterization of Novel Models of Dup15q Syndrome	\$343,438	University of California, Davis
National Institutes of Health	Effects of Social Gaze Training on Brain and Behavior in Fragile X Syndrome	\$358,289	Stanford University

Funder	Project Title	Funding	Institution
National Institutes of Health	Mechanisms Underlying Sensory Over-Responsivity in ASD and Early Adversity	\$201,812	University of California, Los Angeles
National Institutes of Health	Stem Cell- Based Studies of Gene-Environment Interactions in PTEN- Associated Autism	\$197,750	University of California, Los Angeles
National Institutes of Health	Characterizing the CHD8 Complex to Determine Its Role in Autism Spectrum Disorder	\$36,235	Stanford University
National Institutes of Health	Dendrite Morphogenesis, Function and Regeneration	\$521,730	University of California, San Francisco
National Institutes of Health	Identifying Phenotypic Convergence Among Autism Spectrum Disorder (ASD) Genes Using CRISPR/Cas9 in Xenopus	\$220,947	University of California Berkeley
National Institutes of Health	Personalized Treatment of Cognitive Deficits Associated with Deletion of CACNG2	\$232,450	University of California, San Diego
National Institutes of Health	Cross Modal Integration of Molecular and Physiological Networks in ASD (2/2)	\$840,599	Stanford University
National Institutes of Health	1/2 Cross Modal Integration of Molecular and Physiological Networks in ASD	\$1,142,595	University of California, Los Angeles
National Institutes of Health	Formation and Function of Circuitry for Vocal Learning	\$361,456	University of California, Los Angeles
National Institutes of Health	Integrity and Dynamic Processing Efficiency of Networks in ASD	\$598,011	San Diego State University
National Institutes of Health	Chandellier Interneurons and the Excitation/Inhibition Balance in the Human Prefrontal Cortex in Autism	\$384,228	University of California, Davis
National Institutes of Health	The Neurobiological Basis of Heterogeneous Social and Motor Deficits in ASD	\$432,249	University of Southern California
National Institutes of Health	The Impact of TSC-mTOR Signaling on Cells and Circuits in the Basal Ganglia	\$382,705	University of California Berkeley
National Institutes of Health	Gene-Brain-Environment Interactions as Determinants of Typical and Atypical Developmental Trajectories	\$39,195	University of California, Los Angeles
National Institutes of Health	Emergent Gaze Perception in Autism Spectrum Disorder	\$444,567	University of Denver (Colorado Seminary)
National Institutes of Health	Components of Emotional Processing in Toddlers with ASD	\$659,811	Yale University
National Institutes of Health	Neural Mechanisms for Social Interactions and Eye Contact in ASD	\$640,560	Yale University
National Institutes of Health	Neurobiology of Autism with Macrocephaly	\$587,678	Yale University
National Institutes of Health	2/2 Somatic Mosaicism and Autism Spectrum Disorder	\$811,192	Yale University
National Institutes of Health	Functional Genomics of Human Brain Development	\$1,567,441	Yale University
National Institutes of Health	Role of GABAergic Interneurons in Developmental Dysregulation of Cortical Function	\$411,663	Yale University
National Institutes of Health	Mapping Regulatory Networks of Autism Risk at Cellular Resolution During Neurodevelopment	\$154,085	Yale University
National Institutes of Health	Cellular, molecular, and functional imaging approaches to understanding early neurodevelopment in autism	\$2,404,543	Yale University

Funder	Project Title	Funding	Institution
National Institutes of Health	Mechanisms and Rescue of Neural Circuit Dysfunction in MECP2 Mutant Mice	\$249,000	George Washington University
National Institutes of Health	Role of Autism-Linked Genes in Developmental Refinement of the Corpus Callosum	\$437,500	Children's Research Institute
National Institutes of Health	Cognitive and Neural Flexibility in Autism	\$102,986	University of Miami
National Institutes of Health	Cognitive and Neural Flexibility in Autism	\$474,322	University of Miami
National Institutes of Health	Development of a Whole-Brain Cellular Mapping Approach in a Genetic Model of Autism and Intellectual Disability	\$198,000	The Scripps Research Institute, FL
National Institutes of Health	Development and Afferent Regulation of Auditory Neurons	\$380,000	Florida State University
National Institutes of Health	Regulation of mTOR Signaling in the Developing Cerebral Cortex as a Point of Convergence for Multiple Autism Risk Factors	\$480,000	The Scripps Research Institute, FL
National Institutes of Health	Cycles of Social Contingency: Pivotal Transitions That Shape Brain-Behavior Development in Monkeys	\$406,136	Emory University
National Institutes of Health	Mechanistic Transitions That Shape Typical and Atypical Social Visual Engagement	\$322,947	Emory University
National Institutes of Health	Pathways of Social Contingency for Navigating Developmental Landscapes of Risk in ASD: Developmental Progressions and Pivotal Transitions in Infant-Caregiver Vocal Interaction	\$344,934	Emory University
National Institutes of Health	Predicting Voice Quality in ASD from Early Markers of Vocal Development	\$64,100	Emory University
National Institutes of Health	Tet-Mediated Epigenetic Modulation in Autism	\$603,129	Emory University
lational Institutes of Health	Pivotal Transitions in Early Infancy That Shape Network Development of the Social Brain	\$623,256	Emory University
National Institutes of Health	Epigenomic Dysregulation of Neurodevelopmental Genes Underlies Autism Spectrum Disorders	\$231,000	University of Hawaii at Manoa
National Institutes of Health	A Family-Genetic Study of Language in Autism	\$7,584	Northwestern University
National Institutes of Health	A Family-Genetic Study of Language in Autism	\$648,369	Northwestern University
National Institutes of Health	Perception and Central Coherence in Autism: a Family Genetic Eye-Tracking Study	\$73,412	Northwestern University
National Institutes of Health	BPA, Cortical Development and Gene Expression: Implications for Autism	\$198,250	University of Illinois at Urbana-Champaign
National Institutes of Health	Abnormal Cerebellar Physiology and Development in the Autistic Brain	\$44,044	University of Chicago
National Institutes of Health	Striatal Glutamate Signaling and Cognition in Autism Mouse Models	\$192,621	University of Illinois at Chicago
National Institutes of Health	Interactions Between Igsf Proteins in Neural Circuit Formation	\$227,071	University of Chicago

Funder	Project Title	Funding	Institution
National Institutes of Health	Developmental Linkage of Metabolic Homeostasis and Sociality	\$290,356	Indiana University Bloomington
National Institutes of Health	Using Complex Video Stimuli to Elucidate Atypical Brain Functioning in ASD	\$587,342	Indiana University Bloomington
National Institutes of Health	Neural Mechanisms of Predictive Impairments in Autism	\$373,253	Purdue University
National Institutes of Health	Understanding the Biology of Language Impairment Through Whole Genome Sequencing	\$629,957	University of Iowa
National Institutes of Health	Brain Network Dynamics Contributing to Atypical Social Interaction in Autism	\$531,761	University of Maryland, College Park
National Institutes of Health	A Novel Framework for Impaired Imitation in ASD	\$583,217	Hugo W. Moser Res Inst Kennedy Krieger
National Institutes of Health	Thalamocortical Circuit Defects in Developmental Brain Disorders	\$495,593	University of Maryland Baltimore
National Institutes of Health	Somatosensory Inhibitory Dysfunction in Autism Spectrum Disorder.	\$485,332	Johns Hopkins University
National Institutes of Health	A Multimodal Investigation of Inhibitory Dysfunction in Autism Spectrum Disorder	\$82,734	Johns Hopkins University
National Institutes of Health	Neurodevelopmental and Behavioral Phenotyping	\$407,698	National Institutes of Health - Intramural
National Institutes of Health	Cellular and Molecular Analysis of the Schizophrenia and Autism Spectrum Disorder Gene Transcription Factor 4 (Tcf4)	\$456,500	Lieber Institute, Inc.
National Institutes of Health	Role of Somatic Mosaicism in Autism, Schizophrenia, and Bipolar Disorder Brain	\$410,316	Hugo W. Moser Res Inst Kennedy Krieger
National Institutes of Health	Ampa Receptor Trafficking Regulates Social Behaviors in Autism	\$408,854	Johns Hopkins University
National Institutes of Health	Regulation of Neuroligins and Effects on Synapse Number and Function	\$1,269,994	National Institutes of Health - Intramural
National Institutes of Health	Inborn Errors of Cholesterol Synthesis	\$851,090	National Institutes of Health - Intramural
National Institutes of Health	Roles of Oxytocin and Vasopressin in Brain	\$2,009,615	National Institutes of Health - Intramural
National Institutes of Health	The Cognitive Neuroscience of Autism Spectrum Disorders	\$1,283,656	National Institutes of Health - Intramural
National Institutes of Health	Characterization of neuronal population of the raphe nucleus, and establishing their role in autism	\$64,300	U.S. National Inst/Child Hlth/Human Dev
National Institutes of Health	Environmental Toxins and Microglia-Synapse Interactions in Autism	\$375,799	Massachusetts General Hospital
National Institutes of Health	Elucidating Neural Substrates That Mediate Autism-Like Behaviors	\$541,450	Massachusetts Institute of Technology
National Institutes of Health	Mechanisms Underlying Word Learning in Children with ASD: Non-Social Learning And	\$172,195	Boston University (Charles River Campus)
National Institutes of Health	Imaging Biomarkers of Social Cognition and Pharmacologic Target Engagement in ASD	\$188,772	Univ of Massachusetts Med Sch Worcester

Funder	Project Title	Funding	Institution
National Institutes of Health	Integration of Emerging Technologies to Define the Spectrum of Structural Variation in Neuropsychiatric Disease	\$60,188	Massachusetts General Hospital
National Institutes of Health	Quantification of Predictive Motor Impairments in Individuals with ASD	\$255,987	Northeastern University
National Institutes of Health	Charting the Trajectory of Executive Control in Autism in Order to Optimize Delivery of Intervention	\$454,361	Boston Children's Hospital
National Institutes of Health	Cortical Plasticity in Autism Spectrum Disorders	\$437,670	Beth Israel Deaconess Medical Center
National Institutes of Health	Molecular Causes of Cognitive and Autistic Disabilities	\$468,897	Tufts University Boston
National Institutes of Health	Organization of Excitatory and Inhibitory Circuits in ASD	\$409,250	Boston University (Charles River Campus)
National Institutes of Health	1/2-Somatic Mosaicism and Autism Spectrum Disorder	\$1,790,556	Boston Children's Hospital
National Institutes of Health	Neurotrophic Factor Regulation of Gene Expression	\$623,145	Harvard Medical School
National Institutes of Health	Neuronal Activity-Dependent Regulation of MECP2	\$606,445	Harvard Medical School
National Institutes of Health	Mechanotransduction C. Elegans	\$588,908	Massachusetts General Hospital
National Institutes of Health	Functional Connectivity Substrates of Social and Non-Social Deficits in ASD	\$559,195	Massachusetts General Hospital
National Institutes of Health	Neuroimaging Genetics to Study Social Cognitive Deficits in ASD and Schizophrenia	\$249,000	Massachusetts General Hospital
National Institutes of Health	MRI Biomarkers of Patients with Tuberous Sclerosis Complex and Autism	\$728,507	Boston Children's Hospital
National Institutes of Health	A Novel Essential Gene for Human Cognitive Function	\$23,483	Harvard Medical School
National Institutes of Health	Functional Analysis of Neuroligin-Neurexin Interactions in Synaptic Transmission	\$366,406	Univ of Massachusetts Med Sch Worcester
National Institutes of Health	Elucidating Cutaneous Mechanosensory Circuits, from Development to Disease	\$831,501	Harvard Medical School
National Institutes of Health	M1 Circuit Dysfunction in MECP2 Duplication Syndrome	\$218,158	Brigham and Women'S Hospital
National Institutes of Health	Understanding Somatosensory Deficits in Autism Spectrum Disorders	\$88,884	Harvard Medical School
National Institutes of Health	Dissecting Recurrent Microdeletion Syndromes Using Dual-Guide Genome Editing	\$580,798	Massachusetts General Hospital
National Institutes of Health	Simultaneous Multiplexed in situ Fluorescence Imaging of Neuronal Proteins and Messenger RNAs	\$414,575	Massachusetts Institute of Technology
National Institutes of Health	Neonatal ABRs and Heritable Risk for ASD	\$232,500	Michigan State University
National Institutes of Health	L1Cam Adhesion and Signaling Pathways in C. Elegans	\$339,037	University of Minnesota
National Institutes of Health	Advancing Early Behavioral and Neural Phenotypes of Social Motivation in ASD	\$185,929	Washington University in St. Louis
National Institutes of Health	Predicting Preschool Psychopathology with Brain Connectivity in Preterm Neonates	\$182,544	Washington University in St. Louis

Funder	Project Title	Funding	Institution
National Institutes of Health	Regulation of Mammalian Social Behavior by the Gtf2i Family of Proteins	\$520,205	Washington University in St. Louis
National Institutes of Health	An fMRI Investigation of Propagated Intrinsic Activity in Early Development and Autism	\$49,044	Washington University in St. Louis
National Institutes of Health	Imaging Brain Function in Children with Autism Spectrum Disorders with Diffuse Optical Tomography	\$141,486	Washington University in St. Louis
National Institutes of Health	Location-Dependent Signaling of mGlu5 in Models of Synaptic Plasticity Using CRISPR-Targeted Mice	\$190,625	Washington University in St. Louis
National Institutes of Health	Mapping Language Processing in Children with Autism Spectrum Disorder with Diffuse Optical Tomography	\$190,625	Washington University in St. Louis
National Institutes of Health	Maternal Immune Activation in a Genetic Mouse Model of ASD	\$375,317	University of Nebraska Medical Center
National Institutes of Health	Signaling Pathways in Autism	\$74,611	University of Nebraska Medical Center
National Institutes of Health	The Impact of PTEN Signaling on Neuronal Form and Function	\$474,273	Dartmouth College
National Institutes of Health	The Role of Kit Signaling in Cerebellar Development	\$130,140	Dartmouth College
National Institutes of Health	Imaging Adaptive Cerebellar Processing at Cellular Resolution in Awake Mice	\$428,215	Princeton University
National Institutes of Health	Connectivity of the Posterior Cerebellum	\$40,644	Princeton University
National Institutes of Health	Endoplasmic Reticulum Stress as a Novel Mechanism of Synaptic Dysfunction in Autism-Associated NLGN3 R451C Human Neurons	\$38,308	Rutgers Robert Wood Johnson Medical School
National Institutes of Health	Cerebellar Determinants of Flexible and Social Behavior on Rapid Time Scales in Autism Model Mice.	\$1,001,818	Princeton University
National Institutes of Health	Neuronal Adaptation and Plasticity After Chronic Disuse	\$423,750	New York University School of Medicine
National Institutes of Health	Neuronal Correlates of Autistic Traits in ADHD and Autism	\$713,234	New York University School of Medicine
National Institutes of Health	CDH8-Dependent Circuit Development in Autism	\$381,375	Icahn School of Medicine at Mount Sinai
National Institutes of Health	Engrailed Genes and Cerebellum Morphology, Spatial Gene Expression and Circuitry	\$639,375	Sloan-Kettering Inst Can Research
National Institutes of Health	Translation, Synchrony, and Cognition	\$380,041	New York University
National Institutes of Health	Adult Neurogenesis and Executive Function	\$394,050	Albert Einstein College of Medicine
National Institutes of Health	Monoallelic Expression in Neurons Derived from Induced Pluripotent Stem Cells	\$417,500	Albert Einstein College of Medicine
National Institutes of Health	Neurodevelopmental Phenotypes in MLL Mutant Mice	\$418,004	Icahn School of Medicine at Mount Sinai
National Institutes of Health	Striatal Specific Alterations in Translation, Synaptic Function, and Behavior In	\$249,000	Columbia University Health Sciences
National Institutes of Health	Control of Neuronal Transcriptional Elongation by BRD4 and Its contribution to Autism	\$41,244	Icahn School of Medicine at Mount Sinai
National Institutes of Health	Translation, Synchrony, and Cognition	\$71,645	New York University

Funder	Project Title	Funding	Institution
National Institutes of Health	Dysfunction of Distinct Amygdala Circuits in a 16p11.2 Model of Autism	\$288,000	Cold Spring Harbor Laboratory
National Institutes of Health	A Diagnostic for Maternal Autoab to Caspr2 to Predict Increased Risk of Autism Spectrum Disorder in Children	\$220,393	Spark2Flame, Inc.
National Institutes of Health	Characterizing Maladaptive Homeostatic Plasticity in an Animal Model of ASD	\$44,044	New York University School of Medicine
National Institutes of Health	Prenatal Environmental Toxicants Induce Neuroinflammation Causing Autistic Behaviors	\$589,282	Wadsworth Center
National Institutes of Health	Optimizing Prediction of Social Deficits in Autism Spectrum Disorders	\$371,918	State University of New York, Stony Brook
National Institutes of Health	Functional Architecture of a Face Processing Area in the Common Marmoset	\$49,044	Weill Cornell Medical College
National Institutes of Health	Structure and Function of Neonatal Social Communication in Genetic Mouse Models of Autism	\$334,943	Albert Einstein College of Medicine
National Institutes of Health	Attentional Preferences for Predictability in Young Children with ASD	\$44,044	University of Rochester
National Institutes of Health	The Neurophysiology of Sensory Processing and Multisensory Integration in ASD	\$401,509	Syracuse University
National Institutes of Health	Disrupted Auditory Cortical Plasticity and Behavior in a Model of Rett Syndrome	\$518,964	Cold Spring Harbor Laboratory
National Institutes of Health	Development of Behavioral and Neural Biomarkers for Autism Spectrum Disorder Using a Genetically Defined Subtype	\$211,875	Icahn School of Medicine at Mount Sinai
National Institutes of Health	Otoacoustic Emissions and Auditory Feedback in Minimally Verbal Children with ASD	\$230,750	University of Rochester
National Institutes of Health	Sensory Consequences of Action in Children with Autism Spectrum Disorders	\$265,731	Icahn School of Medicine at Mount Sinai
National Institutes of Health	Early Social Communication Environment and Brain Development in Infants at Risk for Autism	\$85,824	Univ of North Carolina, Chapel Hill
National Institutes of Health	The Elongation Hypothesis of Autism	\$760,000	Univ of North Carolina, Chapel Hill
National Institutes of Health	Role of Ube3A in the Central Nervous System	\$321,269	Univ of North Carolina, Chapel Hill
National Institutes of Health	A Novel Paradigm to Dissect the Function Connectivity in Shank3 Autism Model	\$195,800	Duke University
National Institutes of Health	Mechanisms of Developmental Spine Pruning Regulated by IgCAMs and Semaphorins	\$386,563	Univ of North Carolina, Chapel Hill
National Institutes of Health	Deciphering High Function Autism Using Mice with Human De Novo ANK2 Mutations	\$238,750	Duke University
National Institutes of Health	Neural Circuits That Regulate Social Motivation in Autism	\$147,976	Univ of North Carolina, Chapel Hill
National Institutes of Health	A Conserved Transcriptional Cascade Involved in Brain Overgrowth, Social Behavior and Autism	\$558,715	Case Western Reserve University

Funder	Project Title	Funding	Institution
National Institutes of Health	New Models for Astrocyte Function in Genetic Mouse Models of Autism Spectrum Disorder	\$396,250	Cleveland Clinic
National Institutes of Health	Molecular Mechanisms of Electrical Synapse Formation in Vivo	\$249,000	University of Oregon
National Institutes of Health	Characterizing Patient-Specific Tbr1 Mutations: Understanding a Master Regulator of Autism Risk.	\$499,244	Oregon Health & Science University
National Institutes of Health	Characterizing Mechanistic Heterogeneity Across ADHD and Autism	\$389,936	Oregon Health & Science University
National Institutes of Health	Meg Studies of Auditory Processing in Minimally/Non- Verbal Children with ASD and Intellectual Disability	\$295,510	Children's Hospital of Philadelphia
National Institutes of Health	Electrophysiological Signatures of Language Impairment in Autism Spectrum Disorder	\$321,474	Children's Hospital of Philadelphia
National Institutes of Health	Phase-Amplitude Coupling and Dysfunction in ASD	\$258,000	Children's Hospital of Philadelphia
National Institutes of Health	Altered Nucleus Accumbens Activity as a Shared Neural Circuit Defect for Autism-Related Motor Behaviors	\$43,576	University of Pennsylvania
National Institutes of Health	Altered Ionotropic Receptor Maturation in the Impaired Auditory Critical Periods of Fmr1 Knockout Mice	\$44,044	University of Pennsylvania
National Institutes of Health	Localizing Abnormalities in Goal-Directed Behavior to Striatal Circuits in the Neurexin1alpha Mouse Model	\$44,044	University of Pennsylvania
National Institutes of Health	A Longitudinal Study of Brain Development in Children with Autism	\$659,187	Children's Hospital of Philadelphia
National Institutes of Health	Role of Attention in Balance and Mobility in Autism Spectrum Disorders	\$227,132	University of Pittsburgh
National Institutes of Health	A Mitochondrial-Interneuronal Hypothesis of Autism	\$605,969	Children's Hospital of Philadelphia
National Institutes of Health	Role of 14-3-3Epsilon in Neurite Initiation	\$340,161	Drexel University
National Institutes of Health	Mechanisms of Circuit Failure and Treatments in Patient-Derived Neurons in Autism	\$406,250	Brown University
National Institutes of Health	The Neural Basis of Sequential Control in Human and Non-Human Primates	\$275,764	Brown University
National Institutes of Health	Autism-Linked Endosomal Mechanisms in Neuronal Arborization and Connectivity	\$406,250	Brown University
National Institutes of Health	Transcriptional Regulation of Synapse Development in Intellectual and Developmental Disorders	\$373,750 Medical University of South Carolina	
National Institutes of Health	mTOR Modulation of Myelination	\$179,659	Vanderbilt University Medical Center
National Institutes of Health	FMRP and Pumilio Co-Regulate Synaptogenesis by Controlling Neuroglian Expression	\$28,404	Vanderbilt University
National Institutes of Health	Endocannabinoids in Social and Repetitive Behavioral Domains	\$143,526	Vanderbilt University
National Institutes of Health	Altered Dopamine Transporter Function in Autism	\$12,440	Vanderbilt University
National Institutes of Health	Development of a Selective Metabotropic Glutamate Receptor 7 Allosteric Modulator Probe	\$400,356	Vanderbilt University

Funder	Project Title	Funding	Institution
National Institutes of Health	Research Project: Sensory and Multisensory Contributions to Autism	\$347,769	Vanderbilt University Medical Center
National Institutes of Health	Neural Networks for Attention to Internal and External Sensory Cues in ASD	\$394,652	Vanderbilt University Medical Center
National Institutes of Health	Sensory Contributions to Autism Spectrum Disorders and Links to Social Responsiveness	\$28,702	Vanderbilt University
National Institutes of Health	Peripersonal Space Representation as a Basis for Social Deficits in Autism and Schizophrenia Spectrum Disorders	\$197,500	Vanderbilt University Medical Center
National Institutes of Health	Sensory Project in Infant/Toddler Siblings of Children with Autism (Project SPIS)	\$158,000	Vanderbilt University Medical Center
National Institutes of Health	Spatial, Temporal, and Spatio-Temporal Multisensory Binding Windows in Autism Spectrum Disorder	\$28,723	Vanderbilt University
National Institutes of Health	Prefrontal Corticothalamic Circuits in Autism	\$178,646	University of Texas, Austin
National Institutes of Health	Bidirectional Tyrosine Kinase Signaling	\$506,652	University of Texas Southwestern Medical Center
National Institutes of Health	Visuomotor Integration and Attention in Autism Spectrum Disorder	\$188,447	University of North Texas Health Science Center
National Institutes of Health	Hippocampal Mechanisms in Observational Learning	\$397,754	Baylor College of Medicine
National Institutes of Health	Role of Mef2 and Neural Activity in Cortical Synaptic Weakening and Elimination	\$398,313	University of Texas Southwestern Medical Center
National Institutes of Health	Mechanisms Underlying the Cerebellar Contribution to Autism in Mouse Models of Tuberous Sclerosis Complex	\$190,458 University of Texas Southwestern Medic	
National Institutes of Health	The Role of FoxP1-Regulated Signaling Pathways in Brain Development and Behavior	\$405,000	University of Texas Southwestern Medical Center
National Institutes of Health	Role of Brg1 in Activity-Induced Neuronal Gene Expression and Synaptic Plasticity	\$352,407	University of Texas Southwestern Medical Center
National Institutes of Health	Beyond Diagnostic Classification of Autism: Neuroanatomical, Functional, and Behavioral Phenotypes	\$378,750	University of Utah
National Institutes of Health	Brain Network Development in Normal and Autistic Children	\$197,964	University of Utah
National Institutes of Health	Multiscale Genetic Connectivity of Primate Social Circuits	\$636,124 University of Utah	
National Institutes of Health	Network Abnormalities in Autism	\$78,000	University of Vermont & St Agric College
National Institutes of Health	Maximizing Biospecimen Collection from Children with Mental Health Conditions	\$1	Kaiser Foundation Health Plan of Washington
National Institutes of Health	Inhibitory Dysfunction in Autism	\$552,541	University of Washington
National Institutes of Health	Protein Interaction Network Analysis to Test the Synaptic Hypothesis of Autism		
National Institutes of Health	Maximizing Biospecimen Collection from Children with Mental Health Conditions	\$37,964	Kaiser Foundation Health Plan of Washington

Funder	Project Title	Funding	Institution
National Institutes of Health	Eyeblink Conditioning in School-Aged Children with ASD	\$497,699	Seattle Children's Hospital
National Institutes of Health	Brain Connectivity and the Role of Myelin in Autism Spectrum Disorders	\$134,757	University of Wisconsin-Madison
National Institutes of Health	Characterizing Lexical Processing in Toddlers with Autism Spectrum Disorders	\$539,766	University of Wisconsin-Madison
National Institutes of Health	Spastic Paraplegia, Neurodegeneration and Autism: Possible Role for AT-1/SLC33A1?	\$330,978	University of Wisconsin-Madison
National Institutes of Health	Tools for Manipulating Local Protein Synthesis in the Brain	\$171,824	University of Toronto
Simons Foundation	Cellular and circuit effects of SCN2A haploinsufficiency	\$75,000	The Regents of the University of California, San Francisco (Contracts & Grants)
Simons Foundation	Understanding the neurobiology of attachment deficits in ASD	\$0	University of California, San Francisco
Simons Foundation	Parameterizing Neural Habituation in ASD with Sensory Overresponsivity	\$62,494	University of California, Los Angeles
Simons Foundation	Chromatin remodeling in autism	\$125,000	Stanford University
Simons Foundation	Neurobiology of Rai1, a critical gene for syndromic ASDs	\$175,000	Stanford University
Simons Foundation	Immune signaling in the developing brain in mouse models of ASD	\$100,000	University of California, Davis
Simons Foundation	Illuminating the role of glia in a zebrafish model of Rett syndrome	\$62,500	University of California, San Diego
Simons Foundation	An investigation of inductive learning in autism	\$0	University of California, Berkeley
Simons Foundation	Novel technology for behavioral phenotyping of autism mouse models	\$150,000	California Institute of Technology
Simons Foundation	Delineating the role of Ras/MAPK signaling in 16p11.2 phenotypes	\$250,000	University of California, San Francisco
Simons Foundation	Translational dysregulation of the RhoA pathway in autism	\$250,000	University of California, San Diego
Simons Foundation	Exploring calcium signaling defects in a mouse model of 16p11.2 deletion	\$67,246	The Regents of the University of California, San Francisco (Contracts & Grants)
Simons Foundation	Comparison of cortical circuit dysfunction in ASD model mice	\$62,500	University of California, Berkeley
Simons Foundation	Neural correlates of sensory hypersensitivity in autism spectrum disorder	\$150,000	The Salk Institute for Biological Studies
Simons Foundation	Stability of Sensory Coding in Fragile-X Mice - Project 1	\$52,376	The Regents of the University of California, Los Angeles
Simons Foundation	Investigating cell type-specific molecular pathology in autistic brain	\$75,000	The Regents of the University of California, San Francisco (Contracts & Grants)
Simons Foundation	Mechanisms that Connect Autism with Homeostatic Synaptic Plasticity	\$250,000	University of California, San Francisco
Simons Foundation	Do VIP interneurons drive abnormal prefrontal circuit function in autism?	\$150,000	University of California, San Francisco

Funder	Project Title	Funding	Institution
Simons Foundation	Expression and characterization of the neuron-specific potassium chloride cotransporter, KCC2	\$70,000	The Regents of the University of California, San Francisco (Contracts & Grants)
Simons Foundation	Chromatin mechanisms of gene repression in ASD and cortical development	\$137,500	The Regents of the University of California, San Francisco (Contracts & Grants)
Simons Foundation	BAF53b (Actl6b) in Autism and Neurodevelopmental Disorders	\$137,500	Stanford University
Simons Foundation	Uncovering Trio's role in Autism Spectrum Disorder	\$75,000	University of Southern California
Simons Foundation	Elucidating the signaling pathways involved in autism spectrum disorder	\$75,000	The Regents of the University of California (Davis)
Simons Foundation	Linking circuit dynamics and behavior in a rat model of autism	\$66,025	University of California, San Francisco
Simons Foundation	The influence of ASD-risk genes on synaptic function in the basal ganglia	\$137,500	The Regents of the University of California, Berkeley
Simons Foundation	The neuronal reprogramming factor and autism- associated gene Myt1l	\$137,500	Stanford University
Simons Foundation	Neural mechanisms of social reward in mouse models of autism	\$124,997	Stanford University
Simons Foundation	Neuroligin function in the prefrontal cortex and autism pathogenesis	\$125,000	Stanford University
Simons Foundation	Decoding Affective Prosody and Communication Circuits in Autism	\$145,671	Stanford University
Simons Foundation	Learning-related activity in the autistic brain	\$70,000	Yale University School of Medicine
Simons Foundation	Restoring GABA inhibition in a Rett syndrome mouse model by tuning a kinase-regulated CI- rheostat	ouse \$66,839 Yale University	
Simons Foundation	Effect of Autism risk genes in neural cell identity using single cell seq	\$137,500	Yale University
Simons Foundation	Mapping ASD regulatory networks at cellular resolution in neurodevelopment	\$137,500	Yale University
Simons Foundation	Dysregulation of mTor/Tsc in 22q11DS Autism Model	\$62,500	George Washington University
Simons Foundation	Disruption of Cortical Projection Neurons, Circuits, and Cognition in ASD		
Simons Foundation	Immune p38-alpha MAPK activation: Convergent mechanism linking autism models	\$107,954 Florida Atlantic University	
Simons Foundation	High Throughput Functional Annotation of Human SCN2A Variants	\$70,000	Northwestern University
Simons Foundation	Neurodevelopmental assessment of motor behavior in a mouse model of autism	\$70,000	The University of Iowa
Simons Foundation	Understanding brain disorders related to the 15q11.2 chromosomal region	\$125,000 Johns Hopkins University School of Medicin	
Simons Foundation	Microglia in models of normal brain development, prenatal immune stress and genetic risk for autism	\$200,000	Harvard Medical School

Funder	Project Title	Funding	Institution
Simons Foundation	Molecular characterization of temperature sensitive circuits in the mouse	\$180,000	Harvard University
Simons Foundation	Delineating neural circuits underlying autism-like behaviors in mice	\$75,000	Massachusetts Institute of Technology
Simons Foundation	Characterizing Sensory Hypersensitivities in Autism	\$231,498	Massachusetts General Hospital
Simons Foundation	Understanding somatosensory deficits in Autism Spectrum Disorder	\$62,500	Harvard University
Simons Foundation	Probing perception and sensorimotor coupling in mouse models of autism	\$225,000	Harvard University
Simons Foundation	Dissecting primary motor cortex circuit dysfunction in a mouse model of MeCP2 duplication syndrome	\$275,000	Brigham and Women's Hospital
Simons Foundation	Understanding Somatosensation Deficits in Autism Spectrum Disorder	\$0	Harvard Medical School
Simons Foundation	Associative circuitry in Bcl11a/Ctip1 ASD mice: growth cone proteomes & RNA	\$75,000	President & Fellows of Harvard College
Simons Foundation	Role of the Thalamic Reticular Nucleus in ASD	\$240,000	Massachusetts Institute of Technology
Simons Foundation	Translational dysregulation in autism pathogenesis and therapy	\$0	Massachusetts General Hospital
Simons Foundation	A novel window into ASD through genetic targeting of striosomes - Core	\$88,865	Massachusetts Institute of Technology
Simons Foundation	The role of PTCHD1 in thalamic reticular nucleus function and ASD	\$125,000	Massachusetts Institute of Technology
Simons Foundation	Molecular consequences of strong effect ASD mutations including 16p11.2	\$225,000	Massachusetts General Hospital
Simons Foundation	Disrupted Homeostatic Synaptic Plasticity in Autism Spectrum Disorders.	\$250,000	Brandeis University
Simons Foundation	Defining the Translational Landscape in Mouse Models of Autism - Core	\$137,500	University of Massachusetts Medical School
Simons Foundation	Development of corticothalamic circuits of prefrontal cortex in mouse models of autism	\$150,000	Boston Children's Hospital
Simons Foundation	Comparison of iPSC reprogramming methods from 16p11.2 microdeletion patient derived tissue	\$657,584	President & Fellows of Harvard College
Simons Foundation	Cell-type-specific brain networks perturbed by genetics in autism	\$136,095	Broad Institute, Inc.
Simons Foundation	ASXL3 in Neural Fate Commitment and Autism Spectrum Disorder	\$75,000	The Regents of the University of Michigan
Simons Foundation	A novel method for revealing the shared molecular pathways of autism genes	\$70,000	Washington University in St. Louis
Simons Foundation	Developmental changes in a mouse model of UBE3A hyperactivation	\$75,000	Washington University in St. Louis
Simons Foundation	Exploring disruption of DNA methylation in autism spectrum disorders	\$75,000	Washington University in St. Louis

Funder	Project Title	Funding	Institution	
Simons Foundation	PsychoGenics Inc.	\$0	PsychoGenics Inc.	
Simons Foundation	Interneuron subtype-specific malfunction in autism spectrum disorders	\$0	New York University School of Medicine	
Simons Foundation	Biased spatiotemporal dynamics of striatal circuits impact behavior in ASD	\$137,500	Columbia University Medical Center	
Simons Foundation	Regulation of striatal neuronal development by mTOR/macroautophagy	\$74,589	Columbia University Medical Center	
Simons Foundation	A novel window into ASD through genetic targeting of striosomes - Project 1	\$0	Cold Spring Harbor Laboratory	
Simons Foundation	Top-down dynamics in autism	\$105,000	Rockefeller University	
Simons Foundation	Neuronal translation in Tsc2+/- and Fmr1-/y mutant ASD mouse models	\$62,499	Columbia University	
Simons Foundation	Role of the hippocampal CA2 region in autism	\$62,500	Columbia University Medical Center	
Simons Foundation	Genetic rescue of a mouse model of Fragile X by targeted deletion of RICTOR	\$0	Albert Einstein College of Medicine	
Simons Foundation	Autophagy pathway alterations in lymphocytes: Potential biomarkers for autism?	\$154,551	Columbia University	
Simons Foundation	Structural Biological Studies of the Soluble and Membrane Regions of KCC2	\$126,163	New York Structural Biology Center	
Simons Foundation	Role of a novel PRCI complex in neurodevelopment and ASD neurobiology	\$225,000	New York University School of Medicine	
Simons Foundation	Oxytocin receptor signaling	\$0	New York University School of Medicine	
Simons Foundation	The intersection between habit and anxiety in a genetic model of autism	\$62,500	Cold Spring Harbor Laboratory	
Simons Foundation	Identification of shared transcriptional profiles with three high-confidence autism mouse models	\$210,000	Univ of North Carolina, Chapel Hill	
Simons Foundation	Does Astrocyte Dysfunction Contribute to Synaptic Pathologies in Autism?	\$150,000 Duke University Medical Center		
Simons Foundation	Spatiotemporal dissection of UBE3A with engineered human cerebral organoids	\$70,000	North Carolina State University	
Simons Foundation	Visualizing neural circuits of social sensory processing	\$62,500	Univ of North Carolina, Chapel Hill	
Simons Foundation	Correcting excitatory-inhibitory imbalance in autism	\$0	Univ of North Carolina, Chapel Hill	
Simons Foundation	A Novel Transcriptional Cascade Involved in Brain Overgrowth in ASD	\$35,000	Case Western Reserve University	
Simons Foundation	Identification of genes responsible for a genetic cause of autism	\$0	Case Western Reserve University	
Simons Foundation	Assessing thalamocortical circuit function in TSC1 and NHE6 mouse models	\$150,000	Brown University	
Simons Foundation	Analysis of Shank3 ubiquitination regulation by RNF31 phosphorylation	\$0	Medical University of South Carolina	

Funder	Project Title	Funding	Institution
Simons Foundation	Cerebello-Cortical circuits in Autism-related behavior	\$75,000 University of Texas Southwestern Med	
Simons Foundation	Canonical Computations in Autism	\$274,139	Baylor College of Medicine
Simons Foundation	Foxp1 orchestration of neuronal function in the striatum	\$147,770	University of Texas Southwestern Medical Center
Simons Foundation	Defining the Translational Landscape in Mouse Models of Autism - Project 1	\$137,500	University of Texas Southwestern Medical Center
Simons Foundation	The Medical College of Wisconsin, Inc.	\$79,560	The Medical College of Wisconsin, Inc.
Simons Foundation	Functional and behavioral analysis of zebrafish ASD models	\$149,956	University of Queensland
Simons Foundation	USP9X: A master gene for neural development and autism	\$69,457	University of Queensland
Simons Foundation	Probing the development and reversibility of autism- related phenotypes in SETD5 conditional knockout mice	\$99,559	Institute of Science and Technology Austria
Simons Foundation	MAGEL2, a candidate gene for autism and Prader-Willi syndrome	\$0	University of Alberta
Simons Foundation	Network activity and translational regulation in SHANK2 ASD neurons	\$136,670	The Hospital for Sick Children
Simons Foundation	Dissecting inhibitory microcircuits during learning in a mouse model of Dravet syndrome	\$70,000	University of Ottawa
Simons Foundation	Brain imaging of treatment response	\$62,167	The Hospital for Sick Children
Simons Foundation	Mechanistic studies of the interaction between Shank3 and CaMKIIa	\$120,000	The Hong Kong University of Science and Technology
Simons Foundation	Convergent signaling pathways linking PTEN and MeCP2, two risk genes for autism spectrum disorders	\$0	Charité – Medical University of Berlin
Simons Foundation	Translational control by RBFox1: investigating its mechanisms and functions	\$70,000	Trinity College Dublin, The University of Dublin
Simons Foundation	Neurobiological basis of connectivity deficits in autism	\$133,004	Fondazione Istituto Italiano di Tecnologia
Simons Foundation	Do toll-like receptor innate immune responses act via autism risk genes to alter neuronal morphology and function?	\$0	Institute of Molecular Biology, Academia Sinica
Simons Foundation	Stability of sensory coding in Fragile-X mice - Core	\$30,303	University of Bristol
Simons Foundation	Identifying autism-associated signaling pathways regulated by CHD8 in vivo	\$125,000	King's College London
Simons Foundation	A major programme of fundamental and clinical autism research	\$4,011,200	University of Edinburgh
National Science Foundation	SHB: Type II (INT): Synthesizing self-model and mirror feedback imageries with applications to behavior modeling for children with autism	\$0	University of Kentucky
National Science Foundation	Collaborative Research: Revealing the Invisible: Data- Intensive Research Using Cognitive, Psychological, and Physiological Measures to Optimize STEM Learning	\$0	TERC Inc

Funder	Project Title	Funding	Institution
National Science Foundation	Collaborative Research: Revealing the Invisible: Data- Intensive Research Using Cognitive, Psychological, and Physiological Measures to Optimize STEM Learning	\$0	Massachusetts Institute of Technology
National Science Foundation	Collaborative Research: Revealing the Invisible: Data- Intensive Research Using Cognitive, Psychological, and Physiological Measures to Optimize STEM Learning	\$0	Landmark College
National Science Foundation	Network Optimization of Functional Connectivity in Neuroimaging for Differential Diagnosis of Brain Diseases	\$0	University of Washington
Tuberous Sclerosis Alliance (TSA)	The impact of Tsc1 deletion on dopamine neurons	\$75,000	UC Berkeley
Tuberous Sclerosis Alliance (TSA)	Sonic hedgehog and ciliary signaling in TSC	\$56,250	Boston Children's Hospital
Tuberous Sclerosis Alliance (TSA)	Impact of Cerebellar – Medial Prefrontal Cortical Circuits	\$75,000	UT Southwestern
The NJ Governor's Council for Medical Research and Treatment of Autism (NJMRTA)	Immune Regulation of Subventricular Zone Neural Stem	\$399,996	Rutgers University, Biomedical and Health Sciences (RBHS)
The NJ Governor's Council for Medical Research and Treatment of Autism (NJMRTA)	Developmental Dysregulation of Inhibitory Neuron Migration as an Experimental Model to Analyze Mechanisms of Pediatric Autism-Epilepsy Syndromes	\$400,000	Rutgers, The State University
Geisinger Autism & Developmental Medicine Institute (GADMI)	Functional Brain Aut/Neurodevelopment	\$25,404	Geisinger-Bucknell Research Initiative
Geisinger Autism & Developmental Medicine Institute (GADMI)	Multisensory Integration (MSI) in Klinefelter and Turner Syndromes	\$104,362	Geisinger-Bucknell Research Initiative
Geisinger Autism & Developmental Medicine Institute (GADMI)	Visual Signals Using Webcam	\$5,904	Geisinger-Bucknell Research Initiative
FRAXA Research Foundation (FRAXA)	Auditory Dysfunction in Fragile X Syndrome, Role for the Sound Localization Pathway	\$90,000	University of Colorado at Denver
FRAXA Research Foundation (FRAXA)	Quantitative Assessment of the Serotonin System in a Mouse Model of Fragile X Syndrome	\$90,000	Mercer University
FRAXA Research Foundation (FRAXA)	MicroRNA Mediated Astroglial GLT1 Dysregulation in Fragile X	\$90,000	Tufts University
FRAXA Research Foundation (FRAXA)	Targeted Transcriptional Reactivation of FMR1 in Fragile X Syndrome Stem Cells	\$90,000	University of Michigan
FRAXA Research Foundation (FRAXA)	Autophagy is a Novel Therapeutic Target of Impaired Cognition in Fragile X Syndrome	\$90,000	Albert Einstein College of Medicine
FRAXA Research Foundation (FRAXA)	Correcting Fragile X Syndrome Deficits by Targeting Neonatal PKCepsilon Signaling in the Brain	\$90,000	College of Staten Island
FRAXA Research Foundation (FRAXA)	Prefrontal Cortex Network (PFC) Dynamics in Fragile X Syndrome	\$90,000	University of Texas at Austin
FRAXA Research Foundation (FRAXA)	Metformin and Aberrant Insulin Signaling in a Fragile X Mouse Model	\$90,000	McGill University
FRAXA Research Foundation (FRAXA)	Research Points to Drugs which Inhibit PDE to Treat Fragile X	\$90,000	INSERM